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ABSTRACT
An effective tutor—human or digital—must determine what
a student does and does not know. Inferring a student’s
knowledge state is challenging because behavioral observa-
tions (e.g., correct vs. incorrect problem solution) provide
only weak evidence. Two classes of models have been pro-
posed to address the challenge. Latent-factor models em-
ploy a collaborative filtering approach in which data from
a population of students solving a population of problems
is used to predict the performance of an individual student
on a specific problem. Knowledge-tracing models exploit
a student’s sequence of problem-solving attempts to deter-
mine the point at which a skill is mastered. Although these
two approaches are complementary, only preliminary, infor-
mal steps have been taken to integrate them. We propose
a principled synthesis of the two approaches in a hierarchi-
cal Bayesian model that predicts student performance by
integrating a theory of the temporal dynamics of learning
with a theory of individual differences among students and
problems. We present results from three data sets from the
DataShop repository indicating that the integrated archi-
tecture outperforms either alone. We find significant predic-
tive value in considering the difficulty of specific problems
(within a skill), a source of information that has rarely been
exploited.
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1. INTRODUCTION
Intelligent tutoring systems (ITS) employ cognitive mod-
els to track and assess student knowledge. Beliefs about
what a student knows and doesn’t know allow an ITS to
dynamically adapt its feedback and instruction to optimize
the depth and efficiency of learning. A student’s knowledge
state can be described by the specific concepts and opera-

tions that have been mastered in the domain of study. These
atomic elements are often referred to as knowledge compo-
nents or skills. (We use the latter term.) For example, in
a geometry curriculum, the parallelogram-area skill involves
being able to compute the area of a parallelogram given the
base and height [6]. Solving any problem typically requires
breaking the problem into a series of steps, each requiring
the application of one or more skills. For example, solving
for x in 3(x+ 2) = 15 might be broken down into two steps:
(1) eliminate-parentheses, which transforms 3(x+2) = 15 to
x+2 = 5, and (2) remove-constant, which simplifies x+2 = 5
to x = 3 [14]. Because the terminology ‘problem step’ is
cumbersome, we shorten it to ‘problem’ in the rest of this
paper.

A key challenge in student modeling is predicting a student’s
success or failure on each problem. Following a common
practice in the literature, we focus on modeling performance
on individual skills. Formally, for a particular skill, the data
consist of a set of binary random variables indicating the
correctness of response on the i’th problem attempted by
a student s, {Xsi}. The data also include the problem la-
bels, {Ysi}, which provide a unique index to each problem
in the ITS. Recent work has considered secondary data, in-
cluding the student’s utilization of hints, response time, and
characteristics of the specific problem and the student’s par-
ticular history with the problem [2, 27]. Although such data
improve predictions, the bulk of research in this area has
focused on the primary success/failure data, and a sensible
research strategy is to determine the best model based on
the primary data, and then to determine how to incorporate
secondary data.

2. EXISTING MODELS OF STUDENT
LEARNING AND PERFORMANCE

The challenge inherent in predicting student performance is
that knowledge state is a hidden variable and must be in-
ferred from patterns of student behavior. Due to the intrin-
sic uncertainty associated with the inference problem, past
approaches have been probabilistic in nature. Two broad
classes of approaches have been explored, which we’ll refer
to as latent-factor models and Bayesian knowledge tracing,
and some preliminary efforts have been made to synthesize
the two. In this paper, we present a principled Bayesian
unification of the two classes of models. We begin, however,
with a summary of past work.



2.1 Latent-factor model
Traditional psychometric methods such as item-response the-
ory [11] use data from a population of students solving a
common set of problems to infer the latent ability of each
student and the latent difficulty of each problem. These
methods can be used to predict student performance. The
simplest such model supposes that the log odds of a correct
response by student s on trial i is given by logit[P (Xsy =
1|Ysi = y)] = αs − δy, where, as before, Ysi denotes the
problem index, αs denotes the student’s ability and δy de-
notes the problem’s difficulty. We refer to this model class
as latent-factor models or LFMs. The left panel of Fig-
ure 2 summarizes a Bayesian LFM in graphical model form,
with priors on the abilities and difficulties (details to follow
shortly), and with G ≡ P (Xsy = 1|Ysi = y).

Latent-factor models have been used within the ITS com-
munity to characterize student performance and predict the
consequences of instructional interventions. Examples in-
clude performance factors analysis [23], learning factors anal-
ysis [6, 5], and instructional factors analysis [8]. Although
these models incorporate a wide range of factors, only a few
papers have considered what has historically been at the core
of latent-factor models, the difficulty of a specific problem.
Consequently, a remove-constant problem step that simpli-
fies x + 1 = 3 is typically considered to to be equivalent to
problem step that simplifies x+ 8 = 11.

2.2 Bayesian knowledge tracing
Bayesian knowledge tracing (BKT ) [9] is based on a the-
ory of all-or-none human learning [1], which postulates that
the knowledge state of student s following trial i, Ksi, is
binary: 1 if the skill has been mastered, 0 otherwise. BKT,
often conceptualized as a hidden Markov model, infers Ksi

from the sequence of observed responses on trials 1 . . . i,
{Xs1, Xs2, . . . , Xsi}. Table 1 presents the model’s four free
parameters.

Because BKT is typically used in modeling practice over
brief intervals, the model assumes no forgetting, i.e., K can-
not transition from 1 to 0. This assumption greatly con-
strains the time-varying knowledge state: it must make at
most one transition from K = 0 to K = 1 over the sequence
of trials. Denoting the trial following which the transition is
made as τ , the generative model specifies:

P (τ = i) =

{
L0 if i = 0

(1− L0)T (1− T )i−1 if i > 0

P (Xsi = 1|G,S, τ) =

{
G if i ≤ τ
1− S otherwise

The middle panel of Figure 2 shows a graphical model depic-
tion of BKT with the knowledge-state transition sequence
represented by τ . With this representation, marginalization
over τ is linear in the number of trials, permitting the ef-
ficient computation of the posterior predictive distribution,
P (Xs,i+1 | Xs1, . . . , Xsi).

2.3 Prior efforts to unify latent-factor
and knowledge-tracing models
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Figure 1: Student × problem matrix for the Geom-
etry Area data, obtained from the PSLC DataShop
[17]. Correct and incorrect responses are green and
red, respectively; white indicates missing data. Stu-
dents who attempted few problems have been omit-
ted.

Latent-factor and knowledge-tracing models have comple-
mentary strengths and weaknesses. LFM addresses indi-
vidual differences among students and problems. However,
because it does not consider the order in which problems
are solved, it ignores the likely possibility that performance
improves over practice. BKT characterizes the temporal dy-
namics of learning. However, because it makes no distinction
among students or problems, it ignores confounding factors
on performance. A natural extension of the models is to for-
mulate some type of combination that yields a more robust
representation of knowledge state.

Interesting extensions have been proposed to each model to
move it toward the other. Starting with LFM, the latent
factors have been augmented with non-latent factors that
represent facets of study history such as the amount and
success of past practice and the type of instructional in-
tervention [5, 6, 7, 8, 19, 23]. However, these approaches
reduce the specific sequential ordering of problems to a few
summary statistics, which may not be sufficient to encode
the relevant history of past experience.

Many proposals have been put forth to adapt parameters of
BKT to individual students. The original BKT paper [9] in-
cluded heuristic parameter adjustments based on the initial
trials in the problem sequence. Another heuristic approach
involves the contextualization of guess and slip probabilities
based on a range of features such as help requests, response
time history, and ITS history [2, 10]. The initial mastery pa-
rameter L0 has been individualized to students, based both
on their performance on other skills [20] and on an inferred
latent ability parameter [26]. Rather than adapting param-
eters to individual students, [22] clustered students based
on their ITS usage patterns and fit separate parameters for
each cluster. The latter two methods require previous his-
tory with a particular student, though placing Dirichlet pri-
ors on guess and slip rates [3, 4] has been used not only to
individuate the parameters for a particular student but to
allow for generalization to new students.

Most applications of BKT fit model parameters indepen-
dently for each skill. There are only a few examples of
modulating parameters based on the specific problem being
solved. In [13], problem difficulty is represented by using the
average number of correct responses on a problem as a fea-
ture in the contextualization model of [2]. In the KT-IDEM
model [21]—the work closest to our own—the guess and slip
parameters are fit individually for each problem within a
skill.



Table 1: Free parameters of BKT
L0 P (Ks0 = 1) probability that student has mastered skill prior to solving

the first problem
T P (Ks,i+1 = 1 | Ksi = 0) transition probability from the not-mastered to mastered

state
G P (Xsi = 1 | Ksi = 0) probability of correctly guessing the answer prior to skill

mastery
S P (Xsi = 0 | Ksi = 1) probability of answering incorrectly due to a slip following

skill mastery

Figure 2: Graphical model depiction of the latent-factor model (left), Bayesian knowledge tracing (middle),
and our hybrid LFKT model (right). Following standard notation, shaded nodes are observations, with X
denoting the response of a student when problem Y is presented. Double circles denote deterministic nodes.
A node’s color represents the model that contributed the node with blue, green and red indicating LFM,
BKT and LFKT nodes, respectively.

Figure 1 provides an intuition for the value of both student-
and problem-specific factors influencing performance. The
Figure shows a student × problem matrix, with a cell col-
ored to indicate whether the student solved the problem.
As variation in the columns indicate, some problems are
more challenging than others. (However, because problem
selection and order are partially confounded, one must be
cautious in attributing the accuracy effects to intrinsic diffi-
culty of the problem. Regardless of the source of the effect,
the presence of the effect is indisputable.)

In the next section, we propose a synthesis of latent-factor
and knowledge-tracing models. The synthesis is a natural
extension and integration of past work. Indeed, the synthe-
sis is so natural that another paper accepted at EDM 2014
also made this same proposal [12]. We address this highly re-
lated work in the discussion section at the end of this paper.
A poster at EDM 2013 [26] also explicitly proposed combin-
ing latent-factor and knowledge-tracing models. However,
their synthesis focused on individuating BKT’s initial mas-
tery probability, whereas our effort focuses on individuating
guess and slip probabilities.

3. LFKT: A SYNTHESIS OF LATENT-
FACTOR AND KNOWLEDGE-TRACING
MODELS

In Figure 2, LFM and BKT are depicted in a manner that al-
lows the two models to be superimposed to obtain a synthe-
sis, which we’ll refer to as LFKT, depicted in the rightmost
panel of the Figure. LFKT personalizes the guess and slip
probabilities based on student ability and problem difficulty:

logit(Gsi|Yis = y) = αs − δy + γG and

logit(Ssi|Yis = y) = δy − αs + γS .

For simplicity, we assume that the effects of ability and
difficulty are symmetric on guessing and slipping, though
scaling parameters could be incorporated to permit asym-
metry. Due to the offsets γG and γS , we can constrain
the expectations E[αs] = 0 and E[δy] = 0 with no loss
of generality. Specifically, we assume αs ∼ N (0, σ2

α) and
δy ∼ N (0, σ2

δ ), where σ2
α and σ2

δ are variances drawn from
an Inverse-Gamma-distributed conjugate prior.

LFKT can be specialized to the LFM simply by fixing T = 0
and L0 = 0. LFKT can be specialized to BKT at the limit
of σ2

α, σ
2
δ → 0.



Table 2: Dataset columns identifying students,
problems, skills and correct responses

Columns

Student anonymous student ID
Problem problem hierarchy + problem name

+ step name
Skill problem hierarchy + knowledge

component
Correct first attempt

The LFKT model allows for the simultaneous determination
of parameters of BKT and LFM. Alternative approaches
might include training one model first, freezing its parame-
ters, and then training the other model; or training the two
models independently and then using them as an ensem-
ble for prediction. However, simultaneous training allows
each component to be informed by the other. Thus, by
considering the difficulty of problems, the transition in the
knowledge state may become sharper, and by considering
the transition in the knowledge state, a better measure of
problem difficulty and student ability may be obtained.

4. METHODOLOGY
4.1 Data and prediction task
Our simulation experiments were conducted using three cor-
pora from the PSLC DataShop [17]: Geometry Area (1996-
97), from the Geometry Cognitive Tutor [16], USNA Physics
Fall 2006, from the Andes Tutor [25] and OLI Engineering
Statics Fall 2011 [24]. The Geometry corpus contains 5,104
trials from 59 students on 18 skills, the Physics corpus con-
tains 110,041 trials from 66 students on 652 skills and the
Statics corpus contains 189,297 trials from 333 students on
156 skills. Each corpus was divided into skill-specific data
sets consisting of the sequence of trials for each student in-
volving problems that require a particular skill. In this pa-
per, we refer to these sequences as student-skill sequences.
If multiple skills are associated with a problem, we treat the
combination of skills as one unique skill. Trial sequences
had mean length 8.0 for Geometry, 4.5 for Physics and 6.0
for Statics.

For reference, Table 2 shows the dataset columns used to
identify students, skills, problems and correct responses. The
PSLC datashop exports datasets in a common format, which
allows us to refer to the same column names for all datasets.
The plus sign indicates that the contents of the columns are
concatenated together. We attach the problem hierarchy
to the skill column following the same practice in [22, 21].
Effectively, this breaks up trial sequences into shorter se-
quences, which alleviates the problem of students forgetting
learned skills over a long time period.

To validate model implementation and parameter settings,
we also explored a synthetic dataset obtained by running
LFKT in generative mode with the same weak priors used
for inference in real datasets. The synthetic dataset contains
50 students and 50 skills. Each skill contains 50 problems
and a student may practice a skill for a maximum of 50
trials.

In the literature on student modeling, a variety of measures
have been used to evaluate model performance. It seems
common to train a model on the entire data set, and to
use an AIC- or BIC-penalized measure of fit to estimate
performance. We prefer the more conventional approach of
partitioning a data set into training and test trials. One
way to partition is between the early and late trials in each
student’s trial sequence. Using this partition, one can pre-
dict the future performance for a current student. Another
way to partition is by placing some students in the training
set and some in the test set. Using this partition, one can
predict the performance of the model on previously unseen
students. We conduct a separate set of simulation studies
for each partitioning.

Model predictions, P̂ , were evaluated using the log likelihood
of the complete test data, i.e.,

l =
∑
s

∑Ns
i=1 ln P̂ (Xsi|Xs1, . . . , Xs,i−1),

which can be interepreted as a measure of sequential pre-
diction accuracy for each test trial conditioned on preceding
trials in the student-skill sequence.

4.2 Models and implementation
We conducted simulations using the three models in Fig-
ure 2—LFM, BKT, and LFKT—in addition to a baseline
model. The baseline model gave a fixed prediction equal
to the mean response accuracy on each skill in the training
set, and was thus independent of trial, problem, and stu-
dent. To get a better handle on the contribution of student
abilities and problem difficulties to model performance, we
also tested variants of LFKT that included only abilities or
only difficulties. We refer to these variants as BKT+A and
BKT+D, where BKT+AD is equivalent to LFKT.

Models containing student ability parameters (LFM, LFKT
and BKT+A) were fitted across skills. Thus, a model may
use the performance of a student on one skill to infer the
student’s performance on another skill. This contrasts with
most work on modeling with BKT, where models are inde-
pendently trained on each skill.

LFM and BKT were implemented as special cases of LFKT,
in order to use the same code and algorithms for each model.
Each model was evaluated in a two-phase process. In the
first phase, using the training data ({Xsi}, {Ysi}) and MCMC
sampling, a set of posterior samples were obtained on the
variables γG, γS , {δy}, {αs}, L0, and T . The conditional
data likelihood for each student, P (Xs|Gs,Ss, L0, T ) was
computed exactly, and therefore sampling of τ was not re-
quired. For the other variables, slice sampling was used for a
total of 100 iterations after a burn-in of 10 iterations. (These
small numbers were sufficient due to the efficiency of slice
sampling.) In the second phase, the training samples were
used to formulate predictions for the test set. Due to the
conjugate prior on the α’s, the posterior predictive distribu-
tion on test student ability could be determined analytically,
i.e., P (αs′ |{αs}), where s′ indexes a test student, and {αs}
are the sampled abilities of the training students. A similar
predictive distribution could be obtained for δy′ , the diffi-
culty level for a problem y′ found in the test set but not the
training set, via P (δy′ |{δy}).



Weak priors were specified for six variables in the LFKT
model: γG, γS ∼ Uniform(−3, 3), L0, T ∼ Uniform(0, 1),
σ2
α, σ

2
δ ∼ Inverse-Gamma(1, 2).

5. EXPERIMENTS
We conducted two experiments to evaluate the models. The
first experiment evaluates model performance on the final
trials of current students whilst the second evaluates model
performance on students held out from training in a par-
ticular skill. The two experimental setups are depicted in
Figure 3 and are explained in the next two sections.

5.1 Experiment 1: Predicting Performance of
Current Students

In this experiment, we ask the question: given the initial
responses of a student practicing some skill, how well does
the model predict performance on the remaining trials? To
answer this question, we grouped trials by skill and student
to obtain a list of student-skill sequences. The last 20% of
trials from each sequence were placed in the testing set. This
design ensures that the models do not have to generalize to
new students.

The top row of Figure 4 shows the mean negative log like-
lihood on the test data. Each graph is for a different data
set. Each bar represents the performance score for a given
model, with the models arranged left-to-right from simplest
to most complex, i.e., from fewest to most free parameters.
Smaller scores indicate better performance. The results are
consistent across the four data sets: (1) BKT outperforms
the baseline model. BKT assumes the student can be in one
of two knowledge states, whereas the baseline model assumes
a single knowledge state (and a constant probability of cor-
rect response across trials for a given skill). (2) When BKT
is modulated by latent student ability (BKT+A) or problem
difficulty (BKT+D), it outperforms off-the-shelf BKT, with
the possible exception of BKT+D in the Geometry data
set. (3) LFKT, which incorporates both student abilities
and problem difficulties, outperforms BKT as well as the
variants that incorporate one latent factor or another. (4)
LFKT also outperforms off-the-shelf LFM, indicating that
the temporal dynamics of learning incorporated into BKT
are helpful for prediction. Thus, we observe clear evidence
that the combination of latent factors and knowledge trac-
ing yields a model with greater predictive power than models
that have one component or the other.

5.2 Experiment 2: Predicting Performance of
New Students

In this experiment, we ask the question: Given a model
trained on some students for a given skill, how well does it
predict performance of a new student on that skill?

For this experiment, we chose a random subset of students to
hold out from each skill. Fifty train/test splits were gener-
ated this way using 10 replications of 5-fold cross validation
(with an 80%/20% data split). Results were averaged across
the 50 test sets.

Test performance in Experiment 2 is shown in the second
row of Figure 4, respectively. The pattern of results we ob-
serve is identical to that in Experiment 1, indicating that the

superiority of LFKT over BKT and LFM does not depend
on the specific manner of evaluating the model. (The error
bars are somewhat smaller in Experiment 2 than in Exper-
iment 1 due to the fact that the nature of the experiment
allowed for more data to be included in the test set.)

We note that Experiment 2 is not purely student stratified
because each student had data included in both the training
and test sets, albeit for different skills. We conducted a third
experiment in which the models were trained not on all skills
simultaneously, but on one skill at a time. This training
procedure ensures that the models are truly naive to a given
student in the test set, which impacts the performance of
BKT+A, LFM, and LFKT. Nonetheless, the training data
still constrains the student ability distribution, and as a re-
sult, the pattern of results still shows LFKT outperforming
LFM and BKT.

5.3 Visualization of the Posterior Marginals
One advantage of using a Bayesian modeling approach is
that we obtain posterior distributions over model parame-
ters, rather than just point estimates, which allows us to di-
rectly quantify model uncertainity about those parameters.
In a Bayesian model, we can estimate the joint posterior
distribution over the parameters conditioned on the train-
ing data. From the joint distribution, which is challenging
to visualize, we can compute marginals for each parameter.
The marginals are easier to interpret. Because we are us-
ing an MCMC sampler, we obtain multiple samples of each
parameter setting. The estimated marginal posterior for a
parameter is then just histogram of those samples.

To calculate the marginals, we trained LFKT on the entire
statics dataset and obtained 1000 samples from the poste-
rior. Figure 5 shows visualizations of the resulting marginal
distributions for each parameter. The x-axis in each plot is
an index over either students, problems, or skills and each
vertical slice of a plot provides the probability distribution
over the parameter’s value. Probability density is indicated
by the color. The targets on the x-axis are sorted by the
mean value of the corresponding parameter.

The top two plots in Figure 5 give us a clue about why
problem difficulties have a larger effect on prediction perfor-
mance than student abilities for the Statics data set. The
posterior on student abilities are smaller in magnitude than
the posterior on problem difficulties. Hence, when abilities
are removed (i.e., set to 0) in LFKT to obtain the BKT+D
model, the model does not lose much during testing. The
model appears to be more certain about student and prob-
lem parameters (top row of Figure 5) than skill parameters
(the bottom two rows of Figure 5). This difference is re-
flected in the fact that LFM, which uses the student and
problem parameters, outperforms BKT, which uses the skill-
specific parameters.

5.4 Execution Time
Even though LFKT combines BKT and LFM, its execution
time is longer than the sum of the execution times of the
two component models. Under LFM, a modification to a
problem’s difficulty requires re-evaluating the likelihood of
the trials involving that problem. However, modifying a
problem’s difficulty under LFKT requires re-evaluating the



Figure 3: Data split for Experiments 1 and 2 (left and right columns, respectively). The squares represent
individual trials and the red triangles represent trials withheld for testing. Squares with different colors
belong to different skills.

Table 3: Execution times (seconds)
Dataset BKT LFM LFKT

Synthetic 68.4 108.1 404.0
Geometry 8.0 2.0 14.5
Physics 211.3 412.4 712.4
Statics 175.3 81.0 865.2

likelihood of all the student-skill sequences that contain the
problem. Table 3 presents the execution time in seconds for
each model when training on the entire dataset. The run-
time of LFKT is superadditive for all but the Physics data
set, which is an anomaly because of (a) the large number of
skills which results in short student-skill sequences and (b)
the large number of problems which results in a sparse col-
lection of student-skill sequences containing any particular
problem. We note that we have made little effort to optimize
run times, and alternative approaches (e.g., maximum like-
lihood parameter estimation) are likely to be significantly
faster. Further, run time should not be nearly as important
a consideration as model accuracy, so long as run times are
tractable, which they clearly are in our simulations.

6. CONCLUSIONS
Within the intelligent tutoring community, there are two
common approaches to modeling the performance of a stu-
dent: Bayesian Knowledge Tracing (BKT) and Latent Fac-
tors Models (LFM). BKT is a two state model that attempts
to characterize the temporal dynamics of student learning.
LFM is a logistic regression model that infers latent fac-
tors associated with students, skills, and problems. Two ap-
proaches are complimentary, allowing us to synthesize the
two into a single model. In this work, we presented LFKT,
which integrates BKT and LFM in a mathematically princi-
pled manner, and we showed that the synthesis outperforms
both BKT and LFM.

We investigated the contribution of individual components
and factors within LFKT. Overall, our results indicate that
the most important contribution to predicting performance

comes from considering problem effects (difficulties), fol-
lowed by student effects (abilities), followed by skill-specific
learning effects (BKT). This ordering holds regardless of
whether we are predicting performance on later trials of cur-
rent students or on complete trial sequences of new students.

One important contribution of the work is the discovery that
problem instances drawing on the same skill can systemati-
cally vary in difficulty, and inferring the latent difficulty of
a problem and incorporating it in a predictive model can
significantly bolster prediction accuracy. Although all prob-
lems that tax a given skill are equivalent in a formal sense,
students are sensitive to the specific instantiation of the skill
in a problem. We are aware of three variants of BKT that
incorporate this useful fact. The KT-IDEM model [21] in-
corporates problem difficulties into BKT by fitting separate
guess and slip probabilities for each a problem in a skill.

The FAST model [12] provides a general framework for char-
acterizing guess and slip probabilities as a sigmoid function
of a weighted linear combination of features. Given stu-
dent and problem features, FAST discovers weights that
are equivalent to the latent ability and difficulty factors in
LFKT. However, in FAST, these factors are assumed to be
independent for guess and slip probabilities. Thus, both
KT-IDEM and FAST have two free parameters associated
with problem difficulty, whereas LFKT has one one, which
is assumed to be symmetric for guess and slip probabilities.
This restriction may benefit LFKT in reducing overfitting.
Another key difference is that both KT-IDEM and FAST are
fit using maxmimum likelihood, whereas LFKT uses MCMC
sampling to estimate Bayesian posteriors. The Bayesian ap-
proach allows LFKT to generalize to new problems and stu-
dents in a principled manner. In a recent collaboration with
the authors of FAST, we have performed a comparison of
LFKT and FAST using the same datasets and evaluation
metrics [15].

Another recent development that is complementary to LFKT
is a variant of BKT in which the probability of initially
knowing a skill (L0) and the transition probability (T ) are
individualized to a student [28]. Individualization occurs by



Figure 4: The mean testing performance on four data sets (columns) in Experiments 1 and 2 (top and bottom
rows, respectively). Each graph shows the negative log likelihood score, averaged across trials, for each of
six models. A lower value indicates better performance. BKT+A and BKT+D correspond to LFKT with
difficulties set to zero or abilities set to zero, respectively. All trials are weighted equally across skills. Error
bars indicate standard errors.

splitting each BKT parameter into skill-specific and student-
specific components which are summed and passed through
a logistic transform, yielding the BKT parameter value. Al-
though this work mostly parallels ours but focusing on dif-
ferent BKT parameters, our discovery of problem-specific
effects makes the intriguing suggestion that one might wish
to consider problem difficulty on the transition probability;
that is, the probability of learning a skill on a trial may be
problem dependendent as well as success dependent.

By understanding the relationship between LFKT and other
innovative variants of BKT, we are starting to delineate the
space of models of student performance and the critical di-
mensions along which they vary. This understanding should
lead to the emergence of a principled, unified theory that
is sensitive to differences among individuals and differences
due to the specific content. Such a theory should yield not
only improved predictions of student performance but also
more effective tutoring systems [18].
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